
Modular Constraint Solver Cooperation
via Abstract Interpretation

ICLP 2020

Pierre Talbot, Éric Monfroy, Charlotte Truchet
{pierre.talbot}@uni.lu

University of Luxembourg

22nd September 2020



Introduction

Many research communities centered around solving techniques and
constraint languages:
I SAT solving: propositional formulas,
I Linear programming: linear relations either on real numbers, integers,

or both (mixed),
I Constraint programming: Boolean and arithmetic constraints with

specialized predicates (global constraints),
I Answer set programming: Horn clauses w/o functions (initially),
I . . .

Even larger if we consider heuristics approaches such as genetic algorithms,
evolutionary algorithms or local search.

2



The challenge

I Each field has developed its own theory and terminology.
I Pro: Very specialized and efficient on their constraint languages.
I Drawback: Hard to transfer knowledge from one field to another.

The overarching project
Take a step back, and try to find a unified theory.

3



The challenge

I Each field has developed its own theory and terminology.
I Pro: Very specialized and efficient on their constraint languages.
I Drawback: Hard to transfer knowledge from one field to another.

The overarching project
Take a step back, and try to find a unified theory.

3



Candidate theory: abstract interpretation

Abstract interpretation is a framework to statically analyse programs and
catch bugs (Cousot and Cousot, 1977).

Interesting features for constraint reasoning

I Mathematical background on lattice theory.
I Abstract domains are lattices with operators encapsulating a constraint

language.
I Product of domains to combine several abstract domains, thus

constraint solving techniques.
I Under-approximation and over-approximation to characterize the

solutions of an abstract element (soundness and completeness).

4



Context

AbSolute: A constraint solver written in OCaml to experiment our ideas.

I 2013: Constraint solver with linear programming, constraint
programming, temporal reasoning (Pelleau and al., 2013).
I Mostly over continuous domains, using over-approximations.
I Cartesian product among abstract domains.

I 2019: Under-approximation and discrete constraint solving, with logical
combination of abstract domains (Talbot and al., 2019).

5



This work

Focus on domain transformers: abstract domains parametrized by other
abstract domains.

Contributions
I Two domain transformers to combine abstract domains sharing

variables.
1. Interval propagators completion: Arithmetic constraints over product of

domains.
2. Delayed product: Exchange of over-approximations among abstract

domains.
I Shared product to combine domain transformers.

6



Plan

I Introduction

I Abstract interpretation for constraint reasoning

I Domain transformers to combine domains

I Conclusion

7



Abstract interpretation in a nutshell

JK] JK[

γ

Φ

A] C [

8



An example

JK] JK[

γ

x > 2.25 ∧ x < 2.75 ∈ Φ

F× F P(R)

9



Over-approximation

JK] JK[

γ

x > 2.25 ∧ x < 2.75 ∈ Φ

[2.25..2.75] {x ∈ R | x > 2.25 ∧ x < 2.75}

10



Under-approximation

JK] JK[

γ

x > 2.25 ∧ x < 2.75 ∈ Φ

[2.375..2.625] {x ∈ R | x > 2.25 ∧ x < 2.75}

11



Abstract domain for constraint reasoning

Lattice 〈A,≤〉 representable in a machine where:
I ≤ is the order, where a ≤ b if b “contains more information than” a,
I ⊥ is the smallest element, t the join, . . .
I J.K] : Φ→ A and γ : A→ C [,
I closure : A→ A to refine an abstract element,
I split : A→ P(A) to divide an element into sub-elements,
I state : A→ {true, false, unknown} to retreive the “solving state” of an

element.

12



Solver by abstract interpretation

A solver by abstract interpretation, with A an abstract domain:

1: solve(a ∈ A)
2: a← closure(a)
3: if state(a) = true then
4: return {a}
5: else if state(a) = false then
6: return {}
7: else
8: 〈a1, . . . , an〉 ← split(a)
9: return

⋃n
i=0 solve(ai )

10: end if

We call solve(JϕK]) to obtain the solutions of the formula ϕ.

13



Plan

I Introduction

I Abstract interpretation for constraint reasoning

I Domain transformers to combine domains

I Conclusion

14



Direct product: combination of abstract domains

Consider the formula ϕ , x > 4 ∧ x < 7 ∧ y + z ≤ 4.
I x > 4 ∧ x < 7 can be treated in the box abstract domain Box ,
I y + z ≤ 4 can be treated in the octagon abstract domain Octagon.

Solution: Rely on the direct product Box × Octagon.

Direct product
〈A1 × . . .× An,≤〉 is an abstract domain where each operator is defined
coordinatewise:
I (a1, . . . , an) ≤ (b1, . . . , bn)⇔

∧
1≤i≤n ai ≤i bi

I γ((a1, . . . , an)) ,
⋃

1≤i≤n γi (ai )
I closure((a1, . . . , an)) , (closure1(a1), . . . , closuren(an))
I ...

Issue: domains do not exchange information.

15



Direct product: combination of abstract domains

Consider the formula ϕ , x > 4 ∧ x < 7 ∧ y + z ≤ 4.
I x > 4 ∧ x < 7 can be treated in the box abstract domain Box ,
I y + z ≤ 4 can be treated in the octagon abstract domain Octagon.

Solution: Rely on the direct product Box × Octagon.

Direct product
〈A1 × . . .× An,≤〉 is an abstract domain where each operator is defined
coordinatewise:
I (a1, . . . , an) ≤ (b1, . . . , bn)⇔

∧
1≤i≤n ai ≤i bi

I γ((a1, . . . , an)) ,
⋃

1≤i≤n γi (ai )
I closure((a1, . . . , an)) , (closure1(a1), . . . , closuren(an))
I ...

Issue: domains do not exchange information.
15



Interval propagators completion

Consider the constraint ϕ , x > 1 ∧ x + y + z ≤ 5 ∧ y − z ≤ 3.
I x > 1 can be interpreted in boxes,
I y − z ≤ 3 in octagons,
I but x + y + z ≤ 5 is too general for any of these two...
I ...and it shares its variables with the other two.

Solution: Use the notion of propagator functions to connect variables
between abstract domains.

16



Interval propagators completion

Example: Propagator x ≥ y
We assume a projection function project : A× Vars → I,
project(a, x) = [x`..xu] and project(a, y) = [y`..yu]:

Jx ≥ yK = λa.a tA Jx ≥ y`KA tA Jy ≤ xuKA

I IPC(A) = A× P(Prop) is a domain transformer equipping A with
propagators,

I We can rely on IPC(Box × Octagon) with a propagator for
x + y + z ≤ 5,

I The bound constraints will automatically be exchanged between both
domains thanks to the propagator.

17



Delayed product

IPC exchanges bound constraints, can we do better?

I ϕ , x > 1 ∧ x + y + z ≤ 5 ∧ y − z ≤ 3.
I Observation: When x is instantiated in x + y + z ≤ 5, we can

transfer the constraint in octagons.
I We have the delayed product DP(A1,A2) to transfer instantiated

constraints from A1 into a more specialized abstract domain A2.
I For instance, consider the abstract domain

DP(IPC(Box × Octagon),Octagon), whenever x = 3, we can transfer
3 + y + z ≤ 5 into the octagon.

18



Delayed product (improved closure)

Even better?

I ϕ , x > 1 ∧ x + y + z ≤ 5 ∧ y − z ≤ 3.
I Observation: We can transfer over-approximations of x + y + z ≤ 5

in octagons.
I For instance, if x = [1..3], we can transfer 1 + y + z ≤ 5⇔ y + z ≤ 4

into the octagon.
I A solution of y + z ≤ 4 will also be a solution of x + y + z ≤ 5, since

x must be at least equal to 1.
I Formally: γ(a t Jx + y + z ≤ 5K]) ⊆ γ(a t Jy + z ≤ 4K]).

19



Shared product

I Domain transformers combine abstract domain.
I How to combine domain transformers? Especially when they share

sub-domains.

Solution: Shared product

I A “top-level” product combining domain transformers and abstract
domains.

I Merge the shared sub-domains in domain transformers using the join t.

20



Application

We experimented on the flexible job-shop scheduling problem.
I Temporal constraints of the form x + y ≤ d (with 3 variables).
I We can treat most of the constraints in IPC(Box × Octagon).
I Over-approximations can be sent in octagons for better efficiency.

Results
I Competitive w.r.t. state of the art (Chuffed) on set of instances with

few machines.
I Our goal is not (yet) to beat benchmarks, but to prove the feasibility

of our approach.

21



Plan

I Introduction

I Abstract interpretation for constraint reasoning

I Domain transformers to combine domains

I Conclusion

22



Related work

I Satisfiability modulo theories (SMT)
I Focus on logical properties, abstract domains focus more on semantics

and modularity.
I Nelson-Oppen is a fixed cooperation scheme, we can run several

cooperation schemes concurrently.
I Abstract Conflict Driven Learning (D’Silva et al., 2013).

I Very nice theoretical framework to integrate solving and abstract
interpretation.

I Still a big gap between theory and practice.
I T OY (Estévez-Martín et al., 2009): notion of bridges among variables,

subsumed by IPC in our framework.

We aim to reduce the gap between practice and theory.

23



Conclusion

I Constraint solver = abstract domain.
I Cooperation scheme = domain transformer.
I We show two cooperation schemes (IPC and DP).
I The shared product allows us to use several cooperation schemes

concurrently and in a modular way.

github.com/ptal/AbSolute/tree/iclp2020

24

github.com/ptal/AbSolute/tree/iclp2020

	Introduction
	Abstract interpretation for constraint reasoning
	Domain transformers to combine domains
	Conclusion

