
Introduction to Abstract Interpretation

Pierre Talbot

pierre.talbot@uni.lu

23rd April 2024

University of Luxembourg

Who am I?

• 2014–2018: Ph.D., Sorbonne University, Paris (supervised by Prof. Carlos Agon).

▶ Spacetime Programming: A Synchronous Language for Constraint Search

• 2018–2019: Postdoctoral researcher, University of Nantes (Prof. Monfroy & Truchet).

▶ Abstract Domains for Constraint Programming.

• 2020–2023: Postdoctoral researcher, University of Luxembourg (Prof. Bouvry).

▶ A Lattice-Based Approach for GPU Programming.

• 2024–: Research scientist, University of Luxembourg.

▶ Abstract Constraint Reasoning.

1

What am I going to talk about?

• Abstract Interpretation: A formal program verification method.

• Research Plan: Research directions among combinatorial optimization, parallel

programming and abstract interpretation.

2

Abstract Interpretation

2

Costly Software Accidents

In 1996, the explosion of Ariane 501, which took ten years and $7 billion to build.

3

Costly Software Accidents

3

Costly Software Accidents

3

What Can We Do?

Nothing but it would be irresponsable.

“People who write software should have a clear sense of responsibility for its reliable

operation and resistance to compromise and error.”1
1https://cacm.acm.org/opinion/responsible-programming/

4

https://cacm.acm.org/opinion/responsible-programming/

Know Your Limits...

OK, we should verify software but we should also know our limits...

Undecidability

By Rice’s theorem, a static analyzer cannot have all the following properties:

• General: works on Turing-complete program.

• Automated: does not require human intervention.

• Sound: report all bugs.

• Complete: all bugs reported are true bugs.

5

Testing

General, semi-automated, complete but unsound (e.g., unit testing).

“Program testing can be used to show the presence of bugs, but never to show their

absence!” (Edsger Dijkstra).

6

Bug Finding

General, automated, incomplete and unsound (e.g. Coverity, CodeSonar).

7

Model-Checking

Non-general (finite state model), semi-automated, complete and sound.

8

Theorem Proving

General, non-automated, complete and sound (e.g., Lean, Coq).

But require human intervention to provide invariants (time consuming and require expertise).

Success story: Compcert, certified C compiler.

9

Abstract Interpretation

General, automated, incomplete and sound.

Success story: Astrée, prove absence of bugs in synchronous
control/command aerospace software (Airbus).

Invented by Patrick Cousot in the seventies [CC77], and developed with his wife Radhia Cousot.

10

Abstract Interpretation

General, automated, incomplete and sound.

Success story: Astrée, prove absence of bugs in synchronous
control/command aerospace software (Airbus).

Invented by Patrick Cousot in the seventies [CC77], and developed with his wife Radhia Cousot.

10

Simple Example: Pop Front

int pop_front(int* a, size_t& n) {

int front = a[0];

for(int i = 0; i < n; ++i) {

a[i - 1] = a[i];

}

n--;

return front;

}

This program has (at least) three bugs.

• Invalid memory access: a[0] when n = 0.

• Invalid memory access: a[i - 1] when i = 0.

• Overflow : ++i can overflow since we can have n > INT MAX.

11

Simple Example: Pop Front

int pop_front(int* a, size_t& n) {

int front = a[0];

for(int i = 0; i < n; ++i) {

a[i - 1] = a[i];

}

n--;

return front;

}

This program has (at least) three bugs.

• Invalid memory access: a[0] when n = 0.

• Invalid memory access: a[i - 1] when i = 0.

• Overflow : ++i can overflow since we can have n > INT MAX.

11

Simple Example: Pop Front

int pop_front(int* a, size_t& n) {

int front = a[0];

for(int i = 0; i < n; ++i) {

a[i - 1] = a[i];

}

n--;

return front;

}

Let’s run mopsa, a static analyzer, on this program:

mopsa-c pop front.c

12

Simple Example: Push Front

Corrected version:

int pop_front(int* a, size_t& n) {

if(n == 0) return -1;

int front = a[0];

for(size_t i = 1; i < n; ++i) {

a[i - 1] = a[i];

}

n--;

return front;

}

13

Abstract Interpretation

Abstract interpretation answers precisely elementary questions:

• What is a program?

• What is a property of a program?

• What is the verification problem?

We now formally introduce abstract interpretation:

• Concrete semantics: answer the questions above.

• Abstract semantics: design effective verification algorithm.

14

Concrete Semantics

14

Syntax

⟨S⟩ ::= X ← E assignment

| if E ◦ E then S else S fi conditional

| while E ◦ E do S done loop

| S ; S sequence

⟨E ⟩ ::= X variable

| −E negation

| E ⋄ E arithmetic operation

| c constant c ∈ Z
| [a, b] random input a, b ∈ Z ∪ {±∞}, a ≤ [a, b] ≤ b

where ◦ ∈ {=, ̸=,≤, <,>,≥, . . .} and ⋄ ∈ {+,−, /, ∗,%, . . .}.

15

What is a Program?

Let’s define:

• X : Var → Z the set of environments.

• L = {ℓ1, . . . , ℓn} the set of control points.

At each control point, we look for the set of all possible values of i :

set of values of i
ℓ1 Zℓ1

i ← 1; ℓ2 {1}ℓ2
while ℓ3 i ≤ 10 do {1}ℓ3

ℓ4 {1}ℓ4
i ← i + 2; ℓ5 {3}ℓ5

doneℓ6

16

What is a Program?

Let’s define:

• X : Var → Z the set of environments.

• L = {ℓ1, . . . , ℓn} the set of control points.

At each control point, we look for the set of all possible values of i :

set of values of i
ℓ1 Zℓ1

i ← 1; ℓ2 {1}ℓ2
while ℓ3 i ≤ 10 do {1, 3}ℓ3

ℓ4 {1, 3}ℓ4
i ← i + 2; ℓ5 {3, 5}ℓ5

doneℓ6

16

What is a Program?

Let’s define:

• X : Var → Z the set of environments.

• L = {ℓ1, . . . , ℓn} the set of control points.

At each control point, we look for the set of all possible values of i :

set of values of i
ℓ1 Zℓ1

i ← 1; ℓ2 {1}ℓ2
while ℓ3 i ≤ 10 do {1, 3, 5, 7, 9, 11}ℓ3

ℓ4 {1, 3, 5, 7, 9}ℓ4
i ← i + 2; ℓ5 {3, 5, 7, 9, 11}ℓ5

doneℓ6 {11}ℓ6

16

Property of Programs

set of values of i
ℓ1 Zℓ1

i ← 1; ℓ2 {1}ℓ2
while ℓ3 i ≤ 10 do {1, 3, 5, 7, 9, 11}ℓ3

ℓ4 {1, 3, 5, 7, 9}ℓ4
i ← i + 2; ℓ5 {3, 5, 7, 9, 11}ℓ5

doneℓ6 {11}ℓ6
• The sets Sℓi are called invariants.

• They are the strongest possible, there is no set S ′
ℓi
such that Sℓi ⊂ S ′

ℓi
.

• A property has the same domain than an invariant, for instance:

assert(i >= 11) after ℓ6 is the property {11, 12, 13, 14, 15, . . .}.
• Clearly this property is validated since {11}ℓ6 ⊆ {11, 12, 13, 14, 15, . . .} (the program is

even more restrictive than the property checked).

How to automatically compute the sets Sℓi?
17

Semantics of Atomic Commands

First, we compute these sets for each expression and atomic commands of the language:

• Semantics of expressions: E : Expr ×X → P(Z).
• Semantics of commands: C : Com × P(X)→ P(X).

Examples

• Simple arithmetic: E(x ∗ y , {x 7→ 4, y 7→ 2}) = {8}.
• Assignment: C(x ← [1, 2], {{x 7→ 10, y 7→ 1}}) = {{x 7→ 1, y 7→ 1}, {x 7→ 2, y 7→ 1}}
• Filtering: C(x ̸= 2, {{x 7→ 1, y 7→ 1}, {x 7→ 2, y 7→ 1}}) = {{x 7→ 1, y 7→ 1}}

18

Equational Semantic Illustrated

• At each location ℓ ∈ L, we compute its set of reachable environments Xℓ.

• We create an equational system from the program such that its solution is {Xℓ1 , . . . ,Xℓn}.

ℓ1 i ← 1; ℓ2

while ℓ3 i ≤ 10 do
ℓ4 i ← i + 2 ℓ5

doneℓ6

Xℓ1 = X
Xℓ2 = C(i ← 1,Xℓ1)

Xℓ3 = Xℓ2 ∪ Xℓ5

Xℓ4 = C(i ≤ 10,Xℓ3)

Xℓ5 = C(i ← i + 2,Xℓ4)

Xℓ6 = C(i > 10,Xℓ3)

19

Equational Semantic Illustrated

• At each location ℓ ∈ L, we compute its set of reachable environments Xℓ.

• We create an equational system from the program such that its solution is {Xℓ1 , . . . ,Xℓn}.

ℓ1 i ← 1; ℓ2

while ℓ3 i ≤ 10 do
ℓ4 i ← i + 2 ℓ5

doneℓ6

Xℓ1 = X
Xℓ2 = C(i ← 1,Xℓ1)

Xℓ3 = Xℓ2 ∪ Xℓ5

Xℓ4 = C(i ≤ 10,Xℓ3)

Xℓ5 = C(i ← i + 2,Xℓ4)

Xℓ6 = C(i > 10,Xℓ3)

Location 0 1 2 3

Xℓ1 {} X X X
Xℓ2 {} {} {ρ ∈ X | ρ(i) = 1} {ρ ∈ X | ρ(i) = 1}
Xℓ3 {} {} {} {ρ ∈ X | ρ(i) = 1}
Xℓ4 {} {} {} {}
Xℓ5 {} {} {} {}
Xℓ6 {} {} {} {}

19

Equational Semantic Illustrated

• At each location ℓ ∈ L, we compute its set of reachable environments Xℓ.

• We create an equational system from the program such that its solution is {Xℓ1 , . . . ,Xℓn}.

ℓ1 i ← 1; ℓ2

while ℓ3 i ≤ 10 do
ℓ4 i ← i + 2 ℓ5

doneℓ6

Xℓ1 = X
Xℓ2 = C(i ← 1,Xℓ1)

Xℓ3 = Xℓ2 ∪ Xℓ5

Xℓ4 = C(i ≤ 10,Xℓ3)

Xℓ5 = C(i ← i + 2,Xℓ4)

Xℓ6 = C(i > 10,Xℓ3)

Location 3 4 . . . 10

Xℓ1 X X X
Xℓ2 {ρ ∈ X | ρ(i) = 1} {ρ ∈ X | ρ(i) = 1} {ρ ∈ X | ρ(i) = 1}
Xℓ3 {ρ ∈ X | ρ(i) = 1} {ρ ∈ X | ρ(i) = 1} {ρ ∈ X | ρ(i) = v , v ∈ {1, 3, . . . , 11}}
Xℓ4 {} {ρ ∈ X | ρ(i) = 1} {ρ ∈ X | ρ(i) = v , v ∈ {1, 3, . . . , 9}}
Xℓ5 {} {ρ ∈ X | ρ(i) = 3} {ρ ∈ X | ρ(i) = v , v ∈ {3, . . . , 11}}
Xℓ6 {} {} {ρ ∈ X | ρ(i) = 11}

Fixpoint reached after 10 iterations. This way of computing the fixpoint is called Jacobi iterations.
19

Properties of Equational Semantics

• From Xℓ2 = C(i ← 1,Xℓ1) to:

F2({Xℓ1 , . . . ,Xℓ6}) = {Xℓ1 ,C(i ← 1,Xℓ1), . . . ,Xℓ6}

Fi ({Xℓ1 , . . . ,Xℓn}) = {X ′
ℓ1 , . . . ,X ′

ℓn}
• Then, the fixpoint of Fn ◦ Fn−1 ◦ . . . ◦ F1 starting at {{}ℓ1 , . . . , {}ℓn} is

the unique least fixpoint.

(by Kleene theorem and continuity of all Fi).

• Hence, the equational semantics capture all possible executions and nothing more!

20

Summary

Abstract interpretation answers precisely the questions we raised at the beginning:

• What is a program? The least fixpoint point of eq(S).

• What is a property? A subset of the environment P ∈ P(X).

Example: i < 12 is the property {ρ ∈ X | ρ(i) = v , v ∈ {1, 2, . . . , 11}}.

• What is the verification problem? An inclusion check: (lfp eq(S))ℓi ⊆ P.

Example: Xℓ6 = {ρ ∈ X | ρ(i) = 11} ⊆ {ρ ∈ X | ρ(i) = v , v ∈ {1, 2, . . . , 11}}

21

Small Issues...

• lfp eq(S) might only exists after an infinite number of iterations.

• Even if finite, the sets Xℓi can grow exponentially, and the number of iterations can be

very big.

22

Abstract Semantics

22

Intuitions of Abstract Semantics

Abstract Semantics

Let’s over-approximate the least fixpoint:

lfp eq(S) ⊆ lfp eq♯(S)

such that lfp eq♯(S) is computable in a finite number of steps.

Soundness

If a property can be proved in the abstract semantics, it is true to hold in the concrete

semantics:

(lfp eq♯(S))ℓi ⊆ P ⇒ lfp eq(S) ⊆ P

23

Non-relational domains The interval domain

The interval lattice
Introduced by [Cous76].

B� def= { [a, b] | a ∈ I ∪ {−∞}, b ∈ I ∪ {+∞}, a ≤ b } ∪ {⊥�
b }

⊑

[-1,-1] [1,1][0,0] [9,9]...

[-∞,+∞]

......

[-1,0] [0,1]

[-1,1]

[1,9]...

[0,9]...

...

[-1,9]... ...

[-1,+∞] [0,+∞][-∞,9][-∞,1]

...

⊥

Note: intervals are open at infinite bounds +∞, −∞.
Course 3 Non-Relational Numerical Abstract Domains Antoine Miné p. 37 / 82

Abstract Fixpoint

Instead of working on the set of concrete values, we work on intervals.

⇒ Each operator must be have a computable and effective abstract
counterpart (annotated with ♯).

ℓ1 i ← 1; ℓ2

while ℓ3 i ≤ 10 do
ℓ4 i ← i + 2 ℓ5

doneℓ6

X ♯
ℓ1
= X ♯

X ♯
ℓ2
= C♯(i ← 1,X ♯

ℓ1
)

X ♯
ℓ3
= X ♯

ℓ2
∪♯ X ♯

ℓ5

X ♯
ℓ4
= C♯(i ≤ 10,X ♯

ℓ3
)

X ♯
ℓ5
= C♯(i ← i + 2,X ♯

ℓ4
)

X ♯
ℓ6
= C♯(i > 10,X ♯

ℓ3
)

24

Loss of Precision

ℓ1 i ← 1; ℓ2

while ℓ3 i ≤ 10 do
ℓ4 i ← i + 2 ℓ5

doneℓ6

X ♯
ℓ1
= X ♯

X ♯
ℓ2
= C♯(i ← 1,X ♯

ℓ1
)

X ♯
ℓ3
= X ♯

ℓ2
∪♯ X ♯

ℓ5

X ♯
ℓ4
= C♯(i ≤ 10,X ♯

ℓ3
)

X ♯
ℓ5
= C♯(i ← i + 2,X ♯

ℓ4
)

X ♯
ℓ6
= C♯(i > 10,X ♯

ℓ3
)

Working in the abstract can result in weaker invariants (loss of precision).

Example

• The first time we reach ℓ5, we have X ♯
ℓ5
= {x 7→ [1..3]}.

• But 2 ∈ [1..3] although it is not a possible value!

• This interval analysis would be unable to prove that x ̸= 2 at location ℓ5.

25

Many techniques to improve precision

• Various abstract domains with different precision/efficiency tradeoff (replacing intervals

in the previous example).

• Various products of abstract domains to combine their strengths.

• More efficient fixpoint algorithms.

• . . .

26

Course organisation

Course plan (2/8)
Bricks of abstraction: numerical domains

simple domains

x

y

Intervals
x ∈ [a, b]

x

y

Congruences
x ∈ aZ + b

relational domains

x

y

Octagons
±x ± y ≤ c

x

y

Polyhedra�
i
αi xi ≤ β

specific domains

x

y

Ellipsoids
digital filters

t

y

Exponentials
rounding errors

Course 0 Introduction Antoine Miné p. 33 / 40

Research Plan

26

Research Topics

• Abstract Constraint Reasoning: Can abstract interpretation be the backbone theory to

unify constraint reasoning approaches?

• Goal I: Combine constraint solvers (by reduced products) to solve more efficiently problems.

• Goal II: Generalize reasoning procedures (e.g., multi-objective algorithms, clause learning) to

monotone functions working over any abstract domains.

• Lattice Parallel Programming: Can lattice theory be the backbone of a safe model of

parallel programming?

• Goal I: Make parallel programs correct-by-construction.

• Goal II: Take advantage of specialized hardware (e.g., GPUs, FPGAs, quantum?).

27

Abstract Constraint Reasoning

27

A framework for combining constraint solvers

SAT [DHK13]

SMT [CCM13]

Logic programming [Cou20]

Constraint programming [Pel+13]

Linear programming [CH78]

Multi-objective optimization

Multilevel programming

...

Abstract domains

28

In-Progress: Abstract Constraint Programming

• Context: In constraint programming, propagators are monotone functions reducing the

domains of the variables.

• It is possible to design an abstract domain of propagators [TMT20] ordered by inclusion.

• Research question: From a constraint, e.g. x + y ≤ 12, how do we automatically obtain

its propagator?

Collaboration with Bruno Teheux

It seems that the algebraic essence of propagators comes from residuated lattices.

29

In-Progress: Table Abstract Domain

• Context: In constraint programming, global constraints are propagators with dedicated

inference algorithms for subproblems, e.g., alldifferent([x1,...,xn]).

• Research question: Which global constraints can be generalized into abstract domains?

Collaboration with Éric Monfroy

We are working on the Table abstract domain generalizing the well-known table constraint:

(x ≥ 4 ∧ y > 1 ∧ z < 3)

∨(x = 1 ∧ y = 2 ∧ z = 3)

∨(x > 1 ∧ y > 1 ∧ z > 3)

30

Perspective: Towards automatic creation of the abstract domain

Research question: Given a set of abstract domains and reduced products, how to build the

most efficient one to solve a given formula?

JK JK♭

γ

α

φ

A♯
1 × . . .× A♯

n C ♭

• How to create an appropriate combination of abstract domains for a particular formula?

• “Type inference”: In which abstract domain goes each subformula φi ∈ φ?

31

Lattice Parallel Programming

31

Lattice Parallel Programming

Intuition: data are lattices, programs are monotone functions by construction [TPB22]:

f

g

[0..3]

[1..3]

[2..3]

[3..3]

⊤

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]

• f (x) = x ⊔ [2..∞] models the constraint x ≥ 2.

• g(x) = x ⊔ [−∞..2] models the constraint x ≤ 2.

• Concurrent execution: f || g = [2..2]

A new twist on an old idea: asynchronous iterations of abstract interpretation [Cou77].
32

In-Progress: CUDA-compatible Lattice Library

• Various abstract domains: interval, bitset, store, propagators completion, search tree, branch

and bound, https://github.com/lattice-land

• Octagon soon by Thibault Falque.

• Zonotope soon by Yi-Nung Tsao.

• Turbo GPU-based constraint solver (https://github.com/ptal/turbo/).

33

https://github.com/lattice-land
https://github.com/ptal/turbo/

Perspective: Towards zero-cost abstraction

• Generality comes with layers of software abstractions slowing down the execution.

• Idea: View abstract domain as a specialized constraint compiler to a guarded command

language [TPB22], itself compiled to a lower-level language such as PTX or other

architecture (e.g. FPGA).

• Why interesting: Constraint solving is basically repeating the same thing million of times.

Removing abstractions is accelerating solving, unlocking compilation-based optimization,

and reducing threads divergence.

34

Other Collaborations

Thanks to (or because of?) my Ph.D. students, I can learn about non-lattice stuff.

• Manuel on multi-objective constraint solving algorithms.

• Hedieh on hyperparameter optimization of constraint solver.

• Yi-Nung on formal verification of neural networks.

• Tobias on optimization of quantum circuits.

Fortunately, Thibault (COMOC postdoc) still play with me with lattices :-)

35

Conclusion

35

Universality of Lattice Theory and Abstract Interpretation

Abstraction and approximation are two central concepts in computer science. Abstract

interpretation captures those precisely, thus has many applications beyond program analysis:

• Constraint reasoning.

• Neural network verification.

• (Gradual) typing.

• Conflict-free replicated data types (CRDTs).

• Parallel computing.

36

Abstract Week

A week to learn about abstract interpretation and its applications (static analysis, constraint

reasoning, neural network verification):

• Monday: Introduction to Lattice Theory, Bruno Teheux.

• Tuesday: Introduction to Abstract Interpretation, Pierre Talbot.

• Tuesday: The Octagon Abstract Domain, Thibault Falque.

• Wednesday: Abstract Interpretation of Neural Networks, Yi-Nung Tsao.

• Wednesday: Abstract Interpretation of Constraint Programming, Pierre Talbot.

• Thursday: Lattice Theory for Parallel Programming, Pierre Talbot.

In preparation of the MHPC course Lattice Theory for Parallel Programming with Bruno.

37

Resources

• MPRI class of Antoine Miné:

https://www-apr.lip6.fr/~mine/enseignement/mpri/2023-2024/ (two slides

stolen from this class).

• Two recent books:

38

https://www-apr.lip6.fr/~mine/enseignement/mpri/2023-2024/

References

[CC77] Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints”. In: POPL 77’. ACM, 1977, pp. 238–252. doi: 10.1145/512950.512973.

[CCM13] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. “Theories, Solvers and
Static Analysis by Abstract Interpretation”. In: J. ACM 59.6 (Jan. 2013). doi:

10.1145/2395116.2395120.

[CH78] Patrick Cousot and Nicolas Halbwachs. “Automatic discovery of linear
restraints among variables of a program”. In: Proceedings of the 5th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages. 1978, pp. 84–96.

[Cou20] Patrick Cousot. “The Symbolic Term Abstract Domain”. In: TASE (Dec. 2020).

url:

https://sei.ecnu.edu.cn/tase2020/file/video-slides-PCousot-TASE-2020.pdf.

39

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/2395116.2395120
https://sei.ecnu.edu.cn/tase2020/file/video-slides-PCousot-TASE-2020.pdf

[Cou77] Patrick Cousot. Asynchronous iterative methods for solving a fixed point
system of monotone equations in a complete lattice. Research Report 88.

Grenoble, France: Laboratoire IMAG, Université scientifique et médicale de Grenoble, Sept.

1977, p. 15.

[DHK13] Vijay D’Silva, Leopold Haller, and Daniel Kroening. “Abstract Conflict Driven
Learning”. In: POPL ’13. ACM, 2013, pp. 143–154. doi: 10.1145/2429069.2429087.

[Pel+13] Marie Pelleau et al. “A constraint solver based on abstract domains”. In:
VMCAI 13’. Springer, 2013, pp. 434–454. doi: 10.1007/978-3-642-35873-9_26.

[TMT20] Pierre Talbot, Éric Monfroy, and Charlotte Truchet. “Modular Constraint Solver
Cooperation via Abstract Interpretation”. In: Theory and Practice of Logic

Programming 20.6 (2020), pp. 848–863. doi: 10.1017/S1471068420000162.

[TPB22] Pierre Talbot, Frédéric Pinel, and Pascal Bouvry. “A Variant of Concurrent
Constraint Programming on GPU”. In: Proceedings of the AAAI Conference on

Artificial Intelligence. Vol. 36. 4. 2022, pp. 3830–3839. doi: 10.1609/aaai.v36i4.20298.

40

https://doi.org/10.1145/2429069.2429087
https://doi.org/10.1007/978-3-642-35873-9_26
https://doi.org/10.1017/S1471068420000162
https://doi.org/10.1609/aaai.v36i4.20298

	References

