
Programming Fundamentals 2

Pierre Talbot

23 February 2021

University of Luxembourg



Chapter II. Imperative Programming

A bottom-up approach

0



Types and Memory

0



Untyped memory

The computer memory is just a big chunk of cells each containing either

0 or 1:

0 1 0 0 0 0 1 0

That is, the set {0, 1}n where n is the size of your memory in bits. We say

the memory is untyped since it contains only one sort of type ({0, 1}n).

1



Byte-addressable

Generally, the memory is divided into chunks of 8 bits, called bytes.

Each byte has an address (usually written in hexadecimal form):

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0x22 0x23 0x24

In a program, we read and write in the memory through variables and

statements. But what is a variable really?

2



Mathematically speaking...

A programming variable can be seen as a predicate of the form x ∈ T

where x is its name and T is its type.

Type

A type is the set of values that a variable can take.

• int is the set {−231, . . . , 0, . . . , 231 − 1},
• float is the set {. . . ,−1.5, . . . ,−0,+0, . . . , 1.125, . . . , NaN}

(precisely defined by the IEEE 740 standard),

• char is the set {. . . , a, b, . . . ,
∑
, γ, . . .},

(precisely defined by the Unicode standard),

• boolean is the set {true, false}.

By int x, we mean x ∈ int.

By char c we mean c ∈ char.

3



Operationally speaking...

A programming variable is an address in memory (abstracted by a

symbolic name) and a type.

A type is a size s ∈ N in bits and a pair of imaginary functions

f : {0, 1}s → T and g : T → {0, 1}s , such that T is the values you

manipulate in the program.

Examples

• For int: size = 32 bits, fint(02401000001) = 64,

• For float: size = 32 bits, ffloat(02401000001) = 9.108 . . .−44,

• For char: size = 16 bits, fchar (0801000001) = A,

• For boolean: size = 1 bit, fboolean(1) = true.

More low-level details on memory representation and f in Computing

Infrastructure 1 (e.g. two-complement representation).

4



Static vs Dynamic Type

We say a programming language is statically typed, if each variable has a

single type that can be figured out at compile-time. In contrast, it is

dynamically typed if you can do something like x = 4; x =

"yo!";—the type of x changes during the execution.

In Java, you must explicitly state the type of a variable when declaring it,

and it cannot change later.

5



Drawing the memory

To simplify our drawings, we will view a cell in the memory as the

content of a primitive variable (instead of a cell being just a bit).

int x = 19;

char c = ’Y’;

will be represented as:

19 ’Y’

0x22 0x26 0x28

int x char c

When not needed, we might not write the addresses and types explicitly.

6



Function and Evaluation Strategy

6



Previously...

import java.util.Scanner;

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.print("What’s your name? ");

String name = scanner.nextLine();

System.out.print("What’s your age? ");

int age = scanner.nextInt();

System.out.println("Welcome " + name + " (" + age

+ "years’ old)");

scanner.close();

}

}

How to do if we want to get the information of a second person?

7



Copy-paste programming

You shouldn’t do:

import java.util.Scanner;

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

int age1 = ...

String name1 = ...

int age2 = ...

String name2 = ...

scanner.close();

}

}

because you would have two times the same code!

(It is bad because if you fix a bug in the first part, you might forget to fix the copied/pasted

second part.)

8



Using functions?

import java.util.Scanner;

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

int age1, age2;

String name1, name2;

askPerson(scanner, name1, age1);

askPerson(scanner, name2, age2);

scanner.close();

}

static void askPerson(Scanner scanner, String name, int age) {

System.out.print("What’s your name? ");

name = scanner.nextLine();

System.out.print("What’s your age? ");

age = scanner.nextInt();

System.out.println("Welcome " + name + " (" + age

+ "years’ old)");

}

}

9



Call-by-value evaluation strategy

What happens when you pass an argument to a function?

public static void main(String[] args) {

int age = 0;

askAge(age);

System.out.println("Age: " + age);

}

static void askAge(int age) {

age = 12;

}

0
0x22

age

10



Call-by-value evaluation strategy

What happens when you pass an argument to a function?

public static void main(String[] args) {

int age = 0;

askAge(age);

System.out.println("Age: " + age);

}

static void askAge(int age) {

age = 12;

}

0 0
0x22 0x26

age age

11



Call-by-value evaluation strategy

What happens when you pass an argument to a function?

public static void main(String[] args) {

int age = 0;

askAge(age);

System.out.println("Age: " + age);

}

static void askAge(int age) {

age = 12;

}

0 12
0x22 0x26

age age

12



Call-by-value evaluation strategy

What happens when you pass an argument to a function?

public static void main(String[] args) {

int age = 0;

askAge(age);

System.out.println("Age: " + age);

}

static void askAge(int age) {

age = 12;

}

0
0x22 0x26

age

13



Call-by-value evaluation strategy

What happens when you pass an argument to a function?

The value is copied in a new cell (the parameter) when passed as an

argument! This is called call-by-value evaluation strategy. The fact that

both cells have the same symbolic name does not mean they are equal!

How to do then??

14



Call-by-value evaluation strategy

For a single value (like age) you can write:

public static void main(String[] args) {

int age = askAge();

System.out.println("Age: " + age);

}

static int askAge() {

return 12;

}

However, for multiple values (e.g., the age and name), we need to group

the data in a common structure.

15



Tuple Type

15



Tuple

The simplest way to group values is with the tuple type.

In Python, you could implement askPerson with:

def askPerson():

print("What is your age?")

age = input()

print("What is your name?")

name = input()

return (age, name)

(age, name) = askPerson()

print(name + ", next year you’ll be " + (age + 1))

However, since the types are dynamic, the tuple has the type string * string, thus

age + 1 will fail at runtime.

In a statically typed language, such as OCaml, you create a tuple with:

let askPerson(): string * int = ("Albert", 12)

let person = askPerson()

let next_year_age = person.0 + 1

(∗ ˆ Ooops compile−time error: we try to add Albert and 1... ∗)

16



Tuple

Mathematically speaking...

The tuple is exactly the Cartesian product T1 × T2 between two (or

more) types T1 and T2.

• int× boolean = {(0, true), (0, false), (1, true), . . .},
• (0, true) ∈ int× boolean,

• (13, false) ∈ int× boolean,

• (”Albert”, 13) ∈ String× int

The field of a tuple is accessed with a projection t.i where i ∈ N, e.g.,

person.0, person.1, and (0, true).1 = true.

Oh BTW, in Java, there is no tuple type.

17



Record Type

17



Record

The record type is a simple extension to the tuple type which explicitly names the

fields of the tuple. This is one of the most common constructions to group values in

programming languages.

In C, you write:

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

printf("Hello %s\n", p.name);

}

"Albert" 14

0x22 0x86

p.name p.age

Mathematically, it remains a Cartesian product where the order of the components

does not matter anymore.

18



Records as function parameters

What happens when you pass a record to a function?

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(p);

printf("%s is %d years’ old", p.name, p.age);

}

void birthday(Person p) {

printf("Happy birthday %s", p.name);

p.age = p.age + 1;

}

"Albert" 14
0x22 0x86

p.name p.age

19



Records as function parameters

What happens when you pass a record to a function?

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(p);

printf("%s is %d years’ old", p.name, p.age);

}

void birthday(Person p) {

printf("Happy birthday %s", p.name);

p.age = p.age + 1;

}

"Albert" 14 "Albert" 14
0x22 0x86 0x8A 0xEE

p.name p.age p.name p.age

20



Records as function parameters

What happens when you pass a record to a function?

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(p);

printf("%s is %d years’ old", p.name, p.age);

}

void birthday(Person p) {

printf("Happy birthday %s\n", p.name);

p.age = p.age + 1;

}

"Albert" 14 "Albert" 15
0x22 0x86 0x8A 0xEE

p.name p.age p.name p.age

21



Records as function parameters

What happens when you pass a record to a function?

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(p);

printf("%s is %d years’ old\n", p.name, p.age);

}

void birthday(Person p) {

printf("Happy birthday %s\n", p.name);

p.age = p.age + 1;

}

"Albert" 14
0x22 0x86

p.name p.age

In C, a record is passed by value similarly to primitive types.

So how can we implement birthday?

22



Records as function parameters

What happens when you pass a record to a function?

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(p);

printf("%s is %d years’ old\n", p.name, p.age);

}

void birthday(Person p) {

printf("Happy birthday %s\n", p.name);

p.age = p.age + 1;

}

"Albert" 14
0x22 0x86

p.name p.age

In C, a record is passed by value similarly to primitive types.

So how can we implement birthday?

22



Pointer Type

22



Pointer

We can copy the address of the value p, instead of copying the structure

itself!

This is done through two important operators:

• The address-of operator &x returns the address of a variable x ,

e.g., &p equals 0x22.

• The dereference operator *x interprets the content of x as an

address and returns the value at this address.

• Property: *(&x) = x.

Variables that contains addresses are called pointer.

23



One nice trick: passing the address

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(&p);

printf("%s is %d years’ old", p.name, p.age);

}

void birthday(Person* p) {

printf("Happy birthday %s", (*p).name);

(*p).age = (*p).age + 1;

}

"Albert" 14
0x22 0x86

p.name p.age

24



One nice trick: passing the address

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(&p);

printf("%s is %d years’ old", p.name, p.age);

}

void birthday(Person* p) {

printf("Happy birthday %s", (*p).name);

(*p).age = (*p).age + 1;

}

"Albert" 14 0x22
0x22 0x86 0x8A

p.name p.age p

25



One nice trick: passing the address

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(&p);

printf("%s is %d years’ old", p.name, p.age);

}

void birthday(Person* p) {

printf("Happy birthday %s\n", (*p).name);

(*p).age = (*p).age + 1;

}

"Albert" 15 0x22
0x22 0x86 0x8A

p.name p.age p

26



One nice trick: passing the address

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(&p);

printf("%s is %d years’ old\n", p.name, p.age);

}

void birthday(Person* p) {

printf("Happy birthday %s\n", (*p).name);

(*p).age = (*p).age + 1;

}

"Albert" 15
0x22 0x86

p.name p.age

27



Java does not have mutable record type or explicit

pointer.

However, Java has:

• Implicit pointer called reference.

• An extension of the record type called object.

• Immutable record (new in Java 16, not covered here).

28



Reference Type

28



A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

null

0x22

p

29



A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

null null

0x22 0x26

p p

30



A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

null 0x100

0x22 0x26

p p

null 0

0x100 0x104

name age

31



A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

null 0x100

0x22 0x26

p p

null 0

0x100 0x104

name age

"Albert"

0x200

32



A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

null 0x100

0x22 0x26

p p

0x200 0

0x100 0x104

name age

"Albert"

0x200

33



A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

null 0x100

0x22 0x26

p p

0x200 20

0x100 0x104

name age

"Albert"

0x200

34



A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

0x100

0x22 0x26

p

0x200 20

0x100 0x104

name age

"Albert"

0x200

35



Passing Object to Function

35



Passing reference by value

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

birthday(p);

scanner.close();

}

static Person askPerson(Scanner scanner) {

...

}

static void birthday(Person p) {

System.out.println("Happy birthday " + p.name);

p.age = p.age + 1;

}

}

0x100

0x22

p

0x200 20

0x100 0x104

name age

"Albert"

0x200

36



Passing reference by value

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

birthday(p);

scanner.close();

}

static Person askPerson(Scanner scanner) {

...

}

static void birthday(Person p) {

System.out.println("Happy birthday " + p.name);

p.age = p.age + 1;

}

}

0x100 0x100

0x22 0x26

p p

0x200 20

0x100 0x104

name age

"Albert"

0x200

37



Passing reference by value

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

birthday(p);

scanner.close();

}

static Person askPerson(Scanner scanner) {

...

}

static void birthday(Person p) {

System.out.println("Happy birthday " + p.name);

p.age = p.age + 1;

}

}

0x100 0x100

0x22 0x26

p p

0x200 21

0x100 0x104

name age

"Albert"

0x200

38



Passing reference by value

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

birthday(p);

scanner.close();

}

static Person askPerson(Scanner scanner) {

...

}

static void birthday(Person p) {

System.out.println("Happy birthday " + p.name);

p.age = p.age + 1;

}

}

0x100

0x22 0x26

p

0x200 21

0x100 0x104

name age

"Albert"

0x200

39



Summary on references

• The operator new Person():

1. Allocates a memory block and returns its address.

2. Initializes the content by calling the constructor by default.

• null is the value put inside the memory cell of an uninitialized

object, for instance: Person p;

• When passed by argument or returned, only the address of the

object is copied, not its content.

In comparison to C...

• Pointers are abstracted: we do not need the operators &x or *x.

• Memory is allocated with new, but automatically freed by the

garbage collector.

40



The Concert App

40



The Concert App

We write an app to manage the planning of concerts in imperative Java.

This is how you would write such an app in a language such as C, thus

you should not imitate this style using Java. Our goal is to compare

the imperative/procedural style with the object-oriented style presented

in the next chapter.

We use two records:

• A record Concert

• A record ConcertPlanning

41



// Invariant: startTime < endTime

public class Concert {

public int startTime;

public int endTime;

public static Concert makeConcert(int startTime, int endTime) {

assert startTime < endTime;

Concert c = new Concert();

c.startTime = startTime;

c.endTime = endTime;

}

public static int duration(Concert concert) {

return concert.endTime - concert.startTime;

}

}

• Defensive programming : we add an assert in makeConcert to

enforce the invariant.

• Functions are annotated with static and can be written inside the

class, they are called static methods.

42



public class ConcertPlanning {

public Concert[] concerts;

public static ConcertPlanning makeConcertPlanning() { ... }

public static void addConcert(Concert c) { ... }

public static int totalTimeConcert(ConcertPlanning planning) {

int total_time = 0;

for(int i = 0; i < planning.concerts.length; ++i) {

total_time += total_time(planning.concerts[i]);

}

return total_time;

}

}

43



public class ConcertApp {

public static void main(String[] args) {

Concert c1 = Concert.makeConcert(18, 19);

Concert c2 = Concert.makeConcert(20, 22);

ConcertPlanning planning = ConcertPlanning.makeConcertPlanning();

ConcertPlanning.addConcert(planning, c1);

ConcertPlanning.addConcert(planning, c2);

System.out.println("Total duration of the concerts: " +

ConcertPlanning.totalTimeConcert(planning));

}

}

We call static methods with the name of the class followed by the name

of the function: Class.method (e.g., Concert.makeConcert).

44


