
Programming Fundamentals 2

Pierre Talbot

16 March 2021

University of Luxembourg

Chapter V. Subtype Polymorphism

0

Introductory challenge

Challenge

Add a method ascii_art returning the ASCII drawing of the weapon

(String type).

class Axe { // ...

// from http://www.chris.com/ascii/index.php?art=objects/axes

public String ascii_art() {

return

" /’-./_ \n" + // What’s wrong here?

": ||,> \n" +

" \.-’|| \n" + // And here?

" || \n" +

" || \n" +

" || \n";

}

}

1

Introductory challenge

Challenge

Add a method ascii_art returning the ASCII drawing of the weapon

(String type).

class Axe { // ...

// from http://www.chris.com/ascii/index.php?art=objects/axes

public String ascii_art() {

return

" /’-./_ \n" + // What’s wrong here?

": ||,> \n" +

" \.-’|| \n" + // And here?

" || \n" +

" || \n" +

" || \n";

}

}

1

Introductory challenge (text block Java 15)

Challenge

Add a method ascii_art returning the ASCII drawing of the weapon

(String type).

class Axe { // ...

// from http://www.chris.com/ascii/index.php?art=objects/axes

public String ascii_art() {

return

"""

/’-./_

: ||,>

\\.-’||

||

||

||

""";

}

}

2

Subtype polymorphism

Shop

Consider a weapon shop ArrayList<Weapon> store;, can you print the ASCII

drawing of all the weapons in this store?

Issues

• Class Weapon doesn’t have a method ascii_art!

• How to view the “real or concrete type” an object of type Weapon?

More formally, how to view its runtime type (Axe or Hammer)? Spoiler:

We don’t! We use overriding instead so the runtime type is

automatically used.

3

Subtype polymorphism

Shop

Consider a weapon shop ArrayList<Weapon> store;, can you print the ASCII

drawing of all the weapons in this store?

Issues

• Class Weapon doesn’t have a method ascii_art!

• How to view the “real or concrete type” an object of type Weapon?

More formally, how to view its runtime type (Axe or Hammer)? Spoiler:

We don’t! We use overriding instead so the runtime type is

automatically used.

3

Overriding mechanism

Override-equivalent signatures

Two method signatures are override-equivalent if they have exactly the same

name, same parameters types and return type. Actually, the return type can

be co-variant (we’ll talk about that in Chapter 7).

Overriding

For all classes T ≤ Weapon, if a method T .m is override-equivalent to

Weapon.m, then the method called will be the one of the smallest subclass.

Late-binding

Method calls are resolved at runtime. Indeed, we cannot guess at

compile-time the runtime-type of the object. Why? Imagine the following

code:

Weapon w;

if(a) { w = new Axe();} else { w = new Hammer(); }

w.ascii_art(); // Axe.ascii art or Hammer.ascii art?

4

Overriding mechanism

Override-equivalent signatures

Two method signatures are override-equivalent if they have exactly the same

name, same parameters types and return type. Actually, the return type can

be co-variant (we’ll talk about that in Chapter 7).

Overriding

For all classes T ≤ Weapon, if a method T .m is override-equivalent to

Weapon.m, then the method called will be the one of the smallest subclass.

Late-binding

Method calls are resolved at runtime. Indeed, we cannot guess at

compile-time the runtime-type of the object. Why? Imagine the following

code:

Weapon w;

if(a) { w = new Axe();} else { w = new Hammer(); }

w.ascii_art(); // Axe.ascii art or Hammer.ascii art?

4

Overriding mechanism

Override-equivalent signatures

Two method signatures are override-equivalent if they have exactly the same

name, same parameters types and return type. Actually, the return type can

be co-variant (we’ll talk about that in Chapter 7).

Overriding

For all classes T ≤ Weapon, if a method T .m is override-equivalent to

Weapon.m, then the method called will be the one of the smallest subclass.

Late-binding

Method calls are resolved at runtime. Indeed, we cannot guess at

compile-time the runtime-type of the object. Why? Imagine the following

code:

Weapon w;

if(a) { w = new Axe();} else { w = new Hammer(); }

w.ascii_art(); // Axe.ascii art or Hammer.ascii art?

4

Example overriding

class Weapon {

public String ascii_art() {

return ????;

}

}

Design issue! A weapon cannot be draw in general. By the way, can a

“general weapon” exist? Probably not since it is an abstract concept.

Refactoring

• We must update the class Weapon to take into account the new

requirements.

• Class Weapon must be an abstract class! An abstract class can contain

attributes and methods, but some methods do not have a body.

5

Example overriding

class Weapon {

public String ascii_art() {

return ????;

}

}

Design issue! A weapon cannot be draw in general. By the way, can a

“general weapon” exist? Probably not since it is an abstract concept.

Refactoring

• We must update the class Weapon to take into account the new

requirements.

• Class Weapon must be an abstract class! An abstract class can contain

attributes and methods, but some methods do not have a body.

5

Complete example

abstract class Weapon {

protected double damage;

public Weapon(double damage) {

this.damage = damage;

}

abstract public String ascii_art();

}

class Axe extends Weapon {

private static final double DAMAGE = 10;

public Axe() {

super(DAMAGE);

}

public String ascii_art() {

return

"""

<|>

|

|

""";

}

}

6

Complete example (next)

class Hammer extends Weapon {

private static final double DAMAGE = 20;

public Hammer() {

super(DAMAGE);

}

public String ascii_art() {

return

"""

_ _

|_|_|

|

|

""";

}

}

public class TestWeapon {

public static void main(String[] args) {

ArrayList<Weapon> store = new ArrayList<>();

store.add(new Hammer());

store.add(new Axe());

for(Weapon w : store) {

System.out.println(w.ascii_art());

}

}

}
7

What to remember about subtype polymorphism?

• “Polymorphism” because a type can have several forms (the

subtypes, i.e., in Java the subclasses).

• Overriding mechanism allowing to redefine a behavior more precisely.

• Methods are selected at runtime (late-binding).

• At compile-time, the methods are selected according to the rules of

ad-hoc polymorphism and overloading.

8

Polymorphism Cocktail

8

Mixing overloading and overriding

• We can mix ad-hoc polymorphism and subtype polymorphism

together.

• We first select the method via overloading (selected at

compile-time).

• Then, at runtime, we check if overriding can apply (the signature

must be override-equivalent to the one selected at compile-time).

9

Exercise

class A {

void m(A x, B y){System.out.println ("1");}

void m(B x, A y){System.out.println ("2");}

}

class B extends A {

void m(B x, B y){System.out.println ("3");}

}

class C extends B {

void m(B x, B y){System.out.println ("4");}

void m(C x, C y){System.out.println ("5");}

void m(B x, A y){System.out.println ("6");}

}

10

Exercise (part 2)

For each call, what is the method selected at compile-time, and then at

runtime?

class PolymorphicCocktail {

public static void main(String[] args) {

A a1 = new A();

B b1 = new B();

C c1 = new C();

A a2 = b1;

A a3 = c1;

B b2 = c1;

a1.m(b1,c1);

b1.m(b1,c1);

c1.m(b1,c1);

a1.m(a1,a1);

a2.m(b1,c1);

a3.m(b1,c1);

b2.m(b1,c1);

// ... (more in the next slide)

11

Exercise (part 3)

A a1 = new A();

B b1 = new B();

C c1 = new C();

A a2 = b1;

A a3 = c1;

B b2 = c1;

// ...

a1.m(b2,a3);

a2.m(b2,a3);

a3.m(b2,a3);

a1.m(c1,b1);

b1.m(c1,b1);

b2.m(c1,b1);

c1.m(c1,b1);

}

}

12

Correction

class PolymorphicCocktail {

public static void main(String[] args) {

A a1 = new A();

B b1 = new B();

C c1 = new C();

A a2 = b1;

A a3 = c1;

B b2 = c1;

// solution of the form ‘(compile-time) / (execution-time)’

a1.m(b1,c1); // ambiguous between (1) and (2)

b1.m(b1,c1); // (3)/(3)

c1.m(b1,c1); // (4)/(4)

a1.m(a1,a1); // no suitable method found

a2.m(b1,c1); // ambiguous between (1) and (2)

a3.m(b1,c1); // ambiguous between (1) and (2)

b2.m(b1,c1); // (3)/(4)

a1.m(b2,a3); // (2)/(2)

a2.m(b2,a3); // (2)/(2)

a3.m(b2,a3); // (2)/(6)

// ... (more in the next slide).

13

Correction (part 2)

A a1 = new A();

B b1 = new B();

C c1 = new C();

A a2 = b1;

A a3 = c1;

B b2 = c1;

a1.m(c1,b1); // ambiguous between (1) and (2)

b1.m(c1,b1); // (3)/(3)

b2.m(c1,b1); // (3)/(4)

c1.m(c1,b1); // (4)/(4)

}

}

14

Complementary resources

The Java Language Specification

• Link: http://docs.oracle.com/javase/specs/ (Java 15):

• §8.4.8: overriding.

• §8.4.9: overloading.

• §15.12: Method invocation (detailed steps performed by the

compiler).

• Hard to read and understand because it is exhaustive!

• Nonetheless the best resource to find precise explanations.

15

http://docs.oracle.com/javase/specs/

